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Abstract: Individuals who have undergone treatment for oral cancer oftentimes exhibit compensatory behavior in consonant
production. This pilot study investigates whether compensatory mechanisms utilized in the production of speech sounds with
a given target constriction location vary systematically depending on target manner of articulation. The data reveal that com-
pensatory strategies used to produce target alveolar segments vary systematically as a function of target manner of articulation
in subtle yet meaningful ways. When target constriction degree at a particular constriction location cannot be preserved, indi-
viduals may leverage their ability to finely modulate constriction degree at multiple constriction locations along the vocal
tract. © 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Individuals with advanced lingual cancer oftentimes undergo a glossectomy procedure as part of treatment, whereby all or
part of the tongue is surgically removed, with or without reconstruction. This surgical treatment may be combined with radi-
ation therapy to improve likelihood of survival. This combined-modality treatment leads to reduced lingual mass and mobil-
ity (Pauloski et al, 1998; Nicoletti et al, 2004), giving rise to difficulties in speech production (Imai and Michi, 1992;
Bachher et al., 2002). Several studies have investigated speech production in individuals who have undergone glossectomy
using a variety of modalities, including acoustics (Logemann ef al., 1993; Savariaux ef al., 2001; Zhou et al., 2011), electropa-
latography (EPG) (Fletcher, 1988; Imai and Michi, 1992; Michi, et al 1989), videofluoroscopy (Georgian et al, 1982
Morrish, 1984), ultrasound (Bressmann et al, 2005; Rastadmehr et al, 2008; Acher et al, 2014), cine-MRI (Stone et al.,
2004; Stone et al., 2010; Stone et al., 2014a; Stone et al., 2014b; Reichard et al, 2012), and real-time MRI (Hagedorn et al.,
2021). Accordingly, individuals who have undergone treatment for lingual cancer have been shown to exhibit impaired lin-
gual dynamics, including reduced lingual range of motion (Bressmann ef al., 2005), reduced functional independence of par-
ticular segments of the tongue (Stone ef al., 2004), and reduced complexity of vocal tract shaping (Hagedorn et al, 2021).
Moreover, resection of the oral tongue, as compared to the base of tongue, has been observed to most negatively impact
post-operative speech intelligibility, and speech sounds requiring coronal constrictions are most likely to be impaired (Imai
and Michi, 1992; Wong et al., 2007; Bhattacharya et al., 2021; Bressmann et al., 2009).

Numerous studies over the past several decades have demonstrated that in response to this structural perturbation
to the motor speech system, individuals frequently utilize compensatory strategies to produce consonants post-operatively,
recruiting articulators other than those typically used. For example, when the tongue tip has been resected, a variety of com-
pensatory strategies may be used for the production of target coronal stops /t/ and /d/, including retracting and pressing the
lower lip against the alveolar ridge (Amerman and Laminack, 1974; Duguay and Flach, 1964; Brodnitz, 1960; Massengill
et al., 19705 Skelly et al., 1971), elevating the lower lip behind the upper teeth (Duguay and Flach, 1964), and making palatal
contact with the entire tongue body (Oberg, 2009). Similarly, compensatory strategies observed in the production of target
coronal fricatives include bilabial approximation (Skelly ef al, 1971; Fletcher, 1988), recruitment of the tongue body to assist
the tip in forming the fricative constriction (Reichard et al, 2012), and substantial retraction and depression of the tongue
tip (a pattern not frequently exhibited by typical speakers) (Stone et al., 2014a; Stone ef al., 2014b).

Compensatory behavior observed is not limited to replacement of a target constriction (e.g., of the tongue tip)
with one formed by an alternate articulator, or set of articulators (e.g., the lips). Rather, it may involve simultaneous
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production of two constrictions, one of which may be a full or partial production of the target gesture. For example, in
place of target coronal stops /t/ and /d/, individuals may produce a “flicker-like” motion of the lips along with partial
tongue tip elevation (Aanya et al, 2020), or a lingual gesture with varying degrees of labial protrusion and retraction
(Georgian et al., 1982). The existing literature also suggests that individuals may also modulate subtle aspects of relative
timing of the compensatory gestures. Georgian ef al. (1982) describes compensation for some target alveolar oral stops as
initial velar contact followed quickly by palatal contact, while Skelly er al. (1971) describes compensation for some target
alveolar nasal stops as momentary velar contraction followed by quick uvular relaxation with the lips approaching closure.

The aforementioned findings provide critical clinical and theoretical insight, illustrating the ability of the motor
speech system to adapt to anatomical and physiological perturbation to the tongue. However, no research thus far has
focused on how compensatory strategies used by patients may vary depending on target manner of articulation for target
segments that require constriction formed primarily by a single articulator (e.g., the tongue tip) at a single place of articu-
lation (e.g., alveolar). That is, when the tongue tip is no longer present or able to function as it was pre-operatively, are
segments that vary in manner of articulation, yet require a substantial coronal gesture, compensated for using similar strat-
egies? Or, do the compensatory patterns observed vary as a function of target manner of articulation?

In this pilot study, we use real-time magnetic resonance imaging (rtMRI) and a semi-automatic method of iden-
tifying both constriction location and constriction degree in vocal tract images during target constrictions. As described
above, a variety of methods and imaging modalities, ranging from clinical observation to quantitative articulometry and
palatography, have been utilized to investigate compensatory behavior in post-glossectomy speech. rtMRI, however, is par-
ticularly well-suited for this purpose, given that it provides a full midsagittal view of the vocal tract from the lips to the
larynx, without exposing the participant to ionizing radiation. In doing so, it is able to fully capture constrictions formed
by multiple articulators, at any point along the vocal tract, at once, in contrast to other methods, such as ultrasound or
electropalatography, which quantitatively capture only lingual constrictions. An additional merit of rtMRI as compared to
other articulometry modalities (e.g., electropalatography, electromagnetic articulography, etc.) is that it does not require
intraoral devices or adhesion of sensors to articulators that may be tender or swollen post-surgically.

The aim of this pilot study is to determine whether compensatory strategies used by individual speakers who
have undergone partial glossectomy vary systematically as a function of target manner of articulation. We predict that
within individual speakers, compensatory strategies for target alveolar segments that vary in manner of articulation will
differ, given that though they share a single primary target articulator (i.e., the tongue tip), each is associated with distinct
target articulatory configurations and aerodynamic, acoustic, and perceptual characteristics that may influence which com-
pensatory strategy is deemed most effective by the motor speech system for production of that particular target segment.
Specifically, we predict that target alveolar oral stops (i.e., /t/, /d/), which require a complete circumpalatal seal, are most
likely to be compensated for by individuals with reduced anterior lingual mass and mobility. We predict that target alveo-
lar fricatives (i.e., /s/, /z/) may be deemed achievable by the post-operative motor speech system, and therefore may not be
produced compensatorily, or with as complex compensatory patterns. Although individuals may exhibit difficulty creating
the simultaneous anterior coronal constriction and tight side contact seal with the teeth necessary to produce high-
intensity, high-frequency sibilant noise, resulting in leakage and therefore weakened sibilance, creating turbulence of some
kind may still be feasible. Likewise, target alveolar nasal stops may not be regularly compensated for, given that even in
the absence of a complete circumpalatal seal (resulting in a slight degree of oral airflow) a nasal percept can be produced,
particularly if velopharyngeal port function is intact. Compensation may not be deemed necessary for production of lateral
approximant /1/, given that although complete coronal constriction is typically required, no circumpalatal seal is targeted;
rather, the lateral margin(s) of the tongue are lowered. Producing this articulatory configuration may be possible for post-
operative speakers, despite reduced lingual mass and mobility.

2. Method
2.1 Participants

The participants in this pilot study were two monolingual speakers of American English, 1 male [M1], age 70, and 1
female [F1], age 52, who had undergone partial glossectomy with reconstruction and post-operative chemo-radiation ther-
apy. M1 underwent resection of a >6 cm (T4) tumor in the oral tongue region, while F1 underwent resection of a 4-6 cm
(T3) tumor in the oral and base of tongue regions, and neither had dental involvement. Both participants underwent lin-
gual reconstruction using a radial forearm free flap. Each of the participants acknowledged speech production difficulties.
However, due to extenuating circumstances, neither received speech or swallowing therapy between the time of treatment
and the time of the data collection scan, which took place at least 6 months post-operatively.

The speech of each participant was scored by three licensed speech and language pathologists, independently,
using the American Speech-Language-Hearing Association (ASHA) National Outcomes Measurement System (NOMS)
Motor Speech sub-assessment to derive general indices of participants’ functional communication as it relates to the motor
speech system. The level of speech impairment was comparable for each participant, and a high level of interrater reliabil-
ity was exhibited (M1: M =4.3; SD=0.57; F1: M=4; SD =0). A NOMS Motor Speech score of 4 reflects that “in simple
structured conversation with familiar communication partners, the individual can produce simple words and phrases
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intelligibly. The individual usually requires moderate cueing in order to produce simple sentences intelligibly, although
accuracy may vary.” Acoustic speech samples for each participant are provided as supplemental material.'

2.2 Stimuli

Stimuli included sentences from the TIMIT corpus (Wrench and William, 2000) and excerpts from the Rainbow Passage
(Appendix), displayed to the participants using a projection and mirror setup.

2.3 Procedure

Image data were acquired on a 1.5T GE Sigma scanner, using a 13-interleaf spiral gradient echo pulse sequence
(TR =6.004 ms, FOV =200 x 200 mm, flip angle =15°) and a custom 4-channel head and neck receiver coil. Pixel density
in the midsagittal plane (5mm slice thickness) was 84 x 84 (2.38 x 2.38 mm?). Image data were acquired at a rate of 12.8
frames per second and reconstructed at 23.79 frames per second using a sliding window technique. Acoustic data were
recorded inside the scanner at 20kHz simultaneously with MRI image acquisition, and noise reduced using the custom
protocol described in Bresch et al. (2006).

2.4 Articulator segmentation of real-time MRI data and semi-automatic identification of constriction location and constriction
degree

First, fine-grained, manual, frame-by-frame analysis was completed for all targeted speech segments. Working alongside
the time-aligned acoustic signal, frame number corresponding to maximum constriction, regardless of constriction loca-
tion, was logged for all targeted consonants. Then, all image data were segmented along air-tissue boundaries, based on
location and connection of intensity thresholds, as described in Bresch et al. (2008). Constriction locations were defined
using a two-step process. First, labial, alveolar, palatal, and velar regions were identified for each speaker, and within each
region, all possible cross-distances (in pixels) were calculated, and coordinates along the upper margin of the vocal tract
(i.e., the upper lip, alveolar ridge, hard and soft palates) at which minimum cross-distances occur were determined, result-
ing in a location of maximum constriction (minimum cross-distance) within each region (Fig. 1). Constriction location(s)
for a given segment were defined as those regions containing coordinates at which constriction degree fell below 1.5 pixels
(3.57 mm). Constrictions corresponding to target segments of interest, on all frames previously identified as corresponding
to maximum constriction, were then classified as involving full occlusion (<0.5 pixel), partial occlusion (0.5-1 pixel), or
marginal occlusion (1.001-1.5 pixels). Frames of maximum constriction were confirmed as such by assessing and compar-
ing constriction degrees associated with immediately adjacent frames. Productions corresponding to target consonant clus-
ters were excluded from analysis, given the high degree of co-articulation expected to be exhibited in the production of
the required constrictions. Given that this study aims to investigate compensation for target coronal constrictions, and
given well-documented asymmetries between the production of /l/ in onset and coda positions concerning coronal
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Fig. 1. Labial (blue), alveolar (red), palatal (green), and velar (pink) regions within which constriction locations and degrees are identified.
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constriction, only productions of target /I/ in onset position were included in the analysis. Additionally, since multiple pre-
vious studies have noted the use of the lips in compensatory behavior (Skelly et al., 1971; Georgian ef al., 1982; Fletcher,
1988; Aanya et al., 2020), target labial oral and nasal stop segments were included in analysis for comparison to any possi-
ble labial compensatory behavior observed for target alveolar segments.

3. Results
3.1 Speaker F1

Target alveolar segments. In the production of target voiceless alveolar stop /t/, F1 most frequently produces full or partial
occlusion at the labial constriction location, with some (variable) degree of occlusion at the alveolar constriction location
(75%, 15 of 20 tokens). Full occlusion is produced in the labial region with no alveolar constriction in low vowel contexts,
comprising 20% of tokens (4 of 20 tokens). In the production of target voiced alveolar stop /d/, F1 most frequently produ-
ces full occlusion in the labial region (85.7%, 6 of 7 tokens), at times with some degree of occlusion in the alveolar region
(42.9%, 3 of 7 tokens) (supplemental figure 1A)." As in the case of /t/, full occlusion of the lips without alveolar constric-
tion occurs in low vowel contexts, comprising 57.1% of tokens (4 of 7 tokens).

In the production of target voiceless alveolar fricative /s/, F1 produces full or partial occlusion in the alveolar
region, with partial or marginal occlusion in the labial region (71.4%, 5 of 7 tokens) (supplemental figure 1B).’
Occasionally, occlusion is formed in only one of these regions (28.6%, 2 of 7 tokens). In the production of target voiced
alveolar fricative /z/, F1 produces full, partial, or marginal occlusion in the alveolar region (100%, 7 of 7 tokens), with
some degree of occlusion in the labial region (71.4%, 5 of 7 tokens). Occasionally, occlusion is formed in only the alveolar
region (28.6%, 2 of 7 tokens).

In the production of target alveolar nasal stops, F1 most frequently produces full, partial, or marginal occlusion
in the labial region (94.7%, 18 of 19 tokens), with some degree of occlusion in the alveolar region (78.9%, 15 of 19 tokens)
(supplemental figure 1C)." Full occlusion in only the labial or alveolar region occurs infrequently (21.1%, 4 of 19 tokens).

In the production of target lateral approximants, F1 most frequently produces full or partial occlusion in the
alveolar region (73.3%, 11 of 15 tokens), at times with some degree of occlusion in the labial region (26.6%, 4 of 15
tokens) (supplemental figure 1D)," primarily in the context of rounded vowels.

Target bilabial segments. In the production of target voiceless bilabial oral stop /p/, F1 most frequently produces
full occlusion in the labial region (supplemental figure 1E') (71.4%, 5 of 7 tokens), and sometimes produces partial occlu-
sion in the labial region (28.6%, 2 of 7 tokens). To produce target voiced bilabial oral stop /b/, F1 produces full occlusion
(66.6%, 6 of 9 tokens) and partial occlusion (33.3%, 3 of 9 tokens) in the labial region.

In the production of target bilabial nasal stops, F1 invariably produces full occlusion in the labial region (supple-
mental figure 1F") (100%, 5 of 5 tokens).

In sum, F1 co-produces labial and alveolar constrictions of varying magnitude to compensate for target alveolar
segments (Table 1).

Compensatory constriction degree. In addition to considering where compensatory constrictions of varying degrees
are formed for target segments differing in manner of articulation, finer-grained comparison of constriction degree (where
constrictions were identified) with which compensatory constrictions are produced reveals differences across target segment
types. As reflected in Fig. 2, F1 produces target alveolar stops with relatively narrow labial constrictions (0.46 pixels) and rel-
atively wide alveolar constrictions (0.85 pixels). Nasal stops are compensated by creating similar constriction apertures in
both labial and alveolar regions that are comparable, in degree, to those used in fricative production (0.77 pixels and 0.71
pixels, respectively). Lateral approximants are compensated for using a constriction aperture pattern opposite of that exhib-
ited for oral stops; a very narrow constriction is formed in the alveolar region (0.33 pixels), while a wider constriction is
formed in the labial region (0.62 pixels). Alveolar fricatives are compensated for using a somewhat wider constriction in the
labial region (0.83 pixels) than in the alveolar region (0.66 pixels). The labial constrictions used for target labial oral and
nasal stops are somewhat narrower than those used compensatorily in the production of target alveolar oral stops, and sub-
stantially more narrow than those used in the production of target alveolar nasal stops, laterals, and fricatives.

Table 1. Speaker F1 co-produces labial and alveolar constrictions to compensate for alveolar oral stops, fricatives, nasal stops, and lateral

approximants.
COMPENSATORY PATTERNS OF SPEAKER F1 (ORAL AND BASE OF TONGUE RESECTION)
ALVEOLAR SEGMENTS COMPENSATED FOR
ORAL STOPS FRICATIVES NASAL STOPS LATERAL APPROX.
LABIAL Full/Partial Full/Partial Variable Full/Partial
ALVEOLAR Variable Variable Variable Variable
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F1: Compensatory Constriction Degree
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Fig. 2. Compensatory constriction degree patterns vary systematically for distinct target manners of articulation. Target bilabial oral stops are
produced with labial constriction degrees comparable to those produced compensatorily for alveolar oral stops.

3.2 Speaker M1

Target alveolar segments. In the production of target voiceless alveolar stop /t/, M1 invariably produces full occlusion in
the velar region, with some degree of occlusion in the labial and palatal regions (100%, 8 of 8 tokens). In the production
of target voiced alveolar stop /d/, M1 produces full occlusion in the velar region with some degree of occlusion in the
labial and palatal regions (100%, 2 of 2 tokens) (supplemental figure 2A).

In the production of target voiceless alveolar fricative /s/, M1 produces full occlusion in the velar region, with
marginal occlusion in the labial region (100%, 3 of 3 tokens) (supplemental figure 2B)." In the production of target voiced
alveolar fricative /z/, M1 produces full occlusion in the velar region, with marginal occlusion in the labial region (100%, 2
of 2 tokens).

In the production of target alveolar nasal stops, M1 produces full occlusion in the velar region (100%, 6 of 6
tokens), with partial or marginal occlusion in the labial region (66.6%, 4 of 6 tokens) (supplemental figure 2C).’
Occasionally (33.3%, 2 of 6 tokens), M1 produces full labial and velar occlusion.

In the production of target lateral approximants, M1 produces full occlusion in the velar region, with partial or
marginal occlusion in the labial region (supplemental figure 2D") (100%, 7 of 7 tokens).

Target bilabial segments. In the production of target voiceless bilabial oral stops, M1 produces full labial occlu-
sion and full velar occlusion (100%, 1 of 1 token) (supplemental figure 2E)." In the production of target voiced bilabial
oral stops, M1 produces full velar occlusion (100%, 3 of 3 tokens) with partial labial occlusion (66.6%, 2 of 3 tokens) or
full labial occlusion (33.3%, 1 of 3 tokens).

In the production of target bilabial nasal stops, M1 produces full or partial velar constriction with full or partial
labial constriction (supplemental figure 2F') (100%, 3 of 3 tokens).

In sum, M1 invariably produces a full velar constriction, regardless of target segment type, along with a labial
constriction of varying magnitude, for target alveolar segments (Table 2).

Compensatory constriction degree. As illustrated in Fig. 3, constriction degree in the velar region does not vary
substantially across segments differing in target manner of articulation. However, constriction degree in the labial region
does vary by target manner of articulation. Target alveolar oral stops are produced compensatorily with the narrowest
labial constriction (0.72 pixels), while target alveolar nasal stops and laterals are produced with wider labial constriction

Table. 2. Speaker M1 co-produces labial and velar constrictions during production of target alveolar oral stops, fricatives, nasal stops, and
lateral approximants.

COMPENSATORY PATTERNS OF SPEAKER M1 (ORAL TONGUE RESECTION)

ALVEOLAR SEGMENTS COMPENSATED FOR

ORAL STOPS FRICATIVES NASAL STOPS LATERAL APPROX.
LABIAL Variable Marginal Variable Partial/Marginal
VELAR Full Full Full Full
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M1: Compensatory Constriction Degree
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Fig. 3. Constriction degree formed by the lips, in particular, varies for segments differing in target manner of articulation. Target bilabial stops
are produced using constrictions in the velar and labial regions; target labial constriction degree is narrower than for compensatory labial con-
strictions produced for target alveolar oral stops.

(1.04 pixels and 1.01 pixels, respectively). Target alveolar fricatives are produced with the widest labial constriction (1.5
pixels). Both labial and velar constrictions are present during target labial oral and nasal stops. The labial constriction
degree produced during target labial stops is slightly more narrow than the labial constriction degree produced compensa-
torily during target alveolar stops, and substantially more narrow than those produced during target alveolar nasals tops,
laterals, and fricatives.

4. Discussion

Overall, both F1 and M2 exhibit compensatory behavior for the production of target alveolar constrictions. This is
expected, given that each has undergone glossectomy affecting the oral tongue.

The data reveal that in the production of nearly all target alveolar segments, regardless of target manner of artic-
ulation, F1 frequently utilizes simultaneously produced alveolar and bilabial constrictions. However, patterns in the degree
to which these constrictions are produced vary systematically across target segment type. In the production of target alveo-
lar oral stops, F1 typically produces full or partial labial occlusion with variable degrees of alveolar occlusion. The degree
of compensatory labial occlusion for oral alveolar stops is comparable to that produced in target labial oral stops. In con-
texts of low back vowel /a/ only, F1 produces no alveolar constriction, likely due to difficulty reaching the alveolar region
with the residual tongue tip caused by the low and back starting position of the tongue body. On average, the labial con-
strictions produced are substantially more narrow than the alveolar constrictions produced. This particular articulatory
configuration likely results in an approximation of the acoustic and perceptual correlates of target alveolar oral stops; the
narrow labial constriction gives rise to the period of acoustic silence, while the simultaneously produced partial alveolar
constriction, oftentimes wide in constriction degree, contributes to the production of alveolar-like formant transitions into
and out of adjacent vowels. F1’s co-production of a labial constriction and a slightly narrower alveolar constriction for tar-
get alveolar fricatives likely gives rise to an acoustic percept associated with frication (i.e., turbulent airflow), despite strong
sibilance not likely being produced. F1 compensates for the target alveolar constriction in nasal /n/ by co-producing labial
and alveolar constrictions of comparable constriction degrees. Notably, despite the target forms of each requiring full oral
occlusion in the alveolar region, the constrictions formed are substantially wider than the primary labial constriction used
to compensate for target alveolar oral stops. It is plausible that this configuration, despite possibly not involving complete
oral occlusion (i.e., via a complete circumpalatal seal) at all, results in a perceptually acceptable target alveolar nasal seg-
ment. In FI’s production of the target alveolar lateral, substantial constriction in the alveolar region is formed using the
tongue tip, with a constriction degree more narrow than any other used in target alveolar segments. Wide and variable
labial constriction is observed in contexts of rounded vowels only, and may arise due to co-articulation and not be part of
the compensatory process for this speaker. That F1 produces target laterals using the tongue alone, in contrast to other
target alveolar segments for which she compensates using co-production of labial and alveolar constrictions, is notable. It
is plausible that despite her reduced lingual mass and mobility, forming a complete coronal constriction at the alveolar
ridge in the midline of the vocal tract (in the midsagittal MRI view) is possible precisely because complete occlusion is not
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made at the lateral palatal margins during target /I/; more lingual tissue can be dedicated to forming a complete constric-
tion at a single alveolar point at the vocal tract midline because no lingual tissue is recruited to form complete occlusion
in lateral portions of the alveolar or palatal regions.

Interestingly, a small portion (5 of 16 tokens) of F1’s target labial oral stop productions involve partial occlusion
rather than full. The possibility that this reflects slight labial impairment caused by radiation-induced fibrosis cannot be
definitively ruled out without comparison to pre-operative data. However, given that all such tokens occur in co-
articulatory contexts that would facilitate wider stop constriction apertures being formed (e.g., intervocalically, preceding
low vowels, preceding a rounded segment), and given that F1 invariably forms full labial occlusion in the production of
target bilabial nasal stops, it is far more likely that this pattern does not reflect labial impairment.

During the production of target alveolar segments, M1 exhibits co-produced labial constrictions and velar con-
strictions. For all target alveolar segments, full velar constrictions are formed along with labial constrictions of varying
degrees, depending on segment type. Strikingly, velar constrictions are also produced by M1 during target bilabial oral and
nasal stops. This suggests that rather than the velar constriction being used strategically as a compensatory mechanism, it
more likely emerges as a physiological result of the additional lingual mass caused by the reconstructive lingual flap in the
anterior oral tongue region (supplemental figure 2),' particularly when the jaw position is high due to consonantal
constrictions. While perturbation following glossectomy and reconstruction is frequently observed to result in articulatory
difficulty due to insufficient constriction formation, these data demonstrate that, conversely, it may also cause forced con-
striction formation due to increased lingual mass, impaired lingual mobility, or some combination thereof. This forced
constriction, though not initially formed to compensate for challenging segments, may be taken into account by the post-
operative motor speech system when selecting possible compensatory constrictions to be formed alongside the forced con-
striction (e.g., those involving the lips).

Target oral stops /t/ and /d/ are produced by M1 with the narrowest labial constriction. The co-production of
velar and labial occlusions contributes to the period of acoustic silence produced. Target alveolar fricatives /s/ and /z/ are
produced by M1 using relatively wide labial constriction in conjunction with the narrow velar constriction observed in the
midsagittal plane. It is possible that velar occlusion is made only in the midsagittal plane, but that airflow is permitted
laterally, to effect frication even in the absence of sibilance. Target nasal stop /n/ is produced with a slightly wider labial
constriction than is produced for target alveolar oral stops, along with narrow velar constriction. Like for target alveolar
fricatives, it is plausible that full occlusion is made in the midsagittal plane, though not laterally (precluding a full circum-
palatal seal). Despite this, perceptually acceptable target alveolar nasal resonance may be produced.

Target lateral /1/ is produced by M1 using the widest labial constriction of all target alveolar segments, along
with the narrow velar constriction. The labial constriction formed may compensate for the lack of tongue dorsum retrac-
tion typically produced during target /1/; both of these mechanisms would effectively shorten the posterior portion of the
oral cavity relative to the anterior portion, and consequently lower all resonant frequencies.

As in the case of F1, MI’s production of target labial stops sometimes involves partial constriction, particularly
in co-articulatory contexts that facilitate the production of wider constriction apertures.

All in all, the pilot data at hand illustrate that the compensatory strategies used by individuals who have under-
gone oral tongue glossectomy to produce target alveolar segments do vary systematically as a function of target manner of
articulation in subtle yet meaningful ways. When target constriction degree at a particular constriction location cannot be
preserved, patients may leverage their ability to finely modulate constriction degree at multiple constriction locations along
the vocal tract to compensate. Additionally, individuals who have undergone glossectomy with reconstruction may exhibit
articulatory challenges caused by forced vocal tract constriction formation, as in the case of M1, in addition to the chal-
lenges related to insufficient constriction formation that are more traditionally acknowledged and observed. Moreover, this
pilot study demonstrates that simultaneously produced constrictions which are unlikely to be captured by impressionistic
clinical observation or other imaging modalities are able to captured using real-time MRI. The utility of the particular ana-
Iytical technique employed in this pilot study has also been demonstrated; whereas methods relying on observing articula-
tory behavior of independently chosen articulatory flesh-points or at constriction locations defined a priori, the method at
hand ensures that constriction location and degree are identified in a data-driven way. This is particularly important when
analyzing data of individuals who are likely to use articulatory patterns other than those used by typical speakers.

While this pilot study has helped further characterize possible compensatory behaviors in post-glossectomy
speech, it is not without limitations. Most notably, this study relied on data from only two speakers, precluding one from
making generalizations about compensatory behaviors of this population based on the patterns observed. Moreover, the
speech sample produced by speaker M1 was particularly limited in duration, rendering relatively few analyzable tokens of
interest. Future studies would, ideally, include larger participant populations, especially given the substantial amount of
interspeaker variability that is expected to be exhibited in patient populations, as well as more extensive speech samples,
despite scanner time oftentimes being limited due to patient discomfort or fatigue. Additionally, while our study did not
include pre-operative data collection or analysis due to the prioritization of surgery immediately following diagnosis, col-
lecting pre-operative data as well as post-operative data at multiple time points longitudinally would allow for statistical
analysis of articulatory changes over time. However, it is important to note that pre-operative speech samples are not likely
to be representative of individuals’ typical speech, due to the structural perturbation caused by the tumor and discomfort
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associated with it (Zhou et al., 2011). Future studies will also benefit from recent developments in data acquisition technol-
ogy allowing for data to be collected in multiple planes (e.g., coronal and axial, in addition to sagittal) and in 3 dimensions
(Kim et al., 2009; Lim et al, 2019), and for complexity of vocal tract shaping due to lingual movement in these planes to
be quantified (Hagedorn et al., 2021). Using these methods will enable researchers to determine whether complete occlu-
sion in the midsagittal plane (as observed in the present data) is accompanied by complete or partial occlusion in lateral
regions, as well as to examine patterns in groove shaping during the production of other segments, including target alveo-
lar fricatives. Recent developments in real-time MRI scanner technology and denoising tools (Vaz ef al., 2018) will allow
for higher quality acoustic data to be collected, facilitating acoustic analysis. Access to reliable acoustic data will enable
researchers to determine whether theory-based models used to simulate post-glossectomy speech produce acoustic output
that aligns with the patient data.

The constriction identification and categorization approach that we use is advantageous in that it does not rely
on a priori assumptions regarding constriction location and degree. However, fine-grained interpretation of findings based
on this approach would benefit from its application to large amounts of data from typical speakers, in the future. This will
allow researchers to classify constriction degrees for a given target segment as “typical” or “atypical” in a data-driven way,
based on comparison to patterns exhibited by the typical population.

Last, the findings of this pilot study have clinical implications and can be used to inform and refine intervention
strategies for individuals who have undergone treatment for lingual cancer. First, they showcase compensatory strategies
involving “double articulations” used by patients post-operatively that would not likely be observable in a clinical setting
due to posterior constrictions being occluded by anterior constrictions. While the patients in our study exhibited these
strategies spontaneously (i.e., not under the direction of a clinician) to produce fairly intelligible speech, patients who do
not develop compensatory strategies spontaneously may benefit from being introduced to this approach as part of their
speech rehabilitation plan, alongside the more commonly recommended strategies of “over articulation” and speaking rate
reduction. Second, the findings of our study demonstrate that compensatory strategies used by the participants vary sys-
tematically based on target manner of articulation; target segments that do not require formation of a circumpalatal seal
or build-up of intraoral air pressure are not likely to be compensated for in the same way as those that do. Clinicians may
incorporate this into their practice by suggesting distinct articulatory patterns for target segments differing only in target
manner of articulation, rather than making across-the-board strategy recommendations based on target place of articula-
tion or primary articulator used. Such an approach would benefit patients by enhancing the perceptual contrast produced
for segments sharing a target place of articulation.
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APPENDIX

Phrases read by participants.

TIMIT Sentences:

She had your dark suit in greasy wash water all year.

Don’t ask me to carry an oily rag like that.

Rainbow Passage Excerpt:

When the sunlight strikes raindrops in the air, they act like a prism and form a rainbow. The rainbow is a division of white
light into many beautiful colors. These take the shape of a long round arc with its path high above and its two ends apparently
beyond the horizon.
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